Skip to main content
Mechanisms of Disease

Circadian and Glial Biology (GliaTime)

Olga Barca Mayo
Group Leader | Ramón y Cajal Researcher
olga.barca.mayo@usc.es
 
Lab: P2L8
Field of knowledge

Our group has a strong interest in the mechanism(s) by which astrocytes regulate brain function, including those that are relevant to disorders associated with altered circadian rhythms such as metabolic and aged related neuropathologies. We aim to bridge the gap among research in gliobiology and circadian rhythms to develop new knowledge relevant for health and for neuropharmacological R&D on circadian oscillators in the brain (i.e. astrocyte-astrocyte or astrocyte-neuron molecular signalling).

Research Lines

  • Provide novel insights into the role of astrocytes in regulating brain function.
  • Uncover the mechanism(s) by which astrocyte transmit timing cues to neurons including those that are relevant to disorders associated to altered circadian rhythms such as metabolic and aged associated neuropathology.
  • Deliver a novel cell target, astrocytes, for development of drugs and treatment strategies for circadian disorders. Our research approach is to combine molecular and cellular neurobiology, glial technologies, genetics/epigenetics, behavioural neuroscience and chronobiological techniques.

Members

 

Antía González Vila
PhD student
María Luengo Mateos
FPI fellowship
Marco González Domínguez
PhD student

Selected publications

Deletion of astrocytic BMAL1 results in metabolic imbalance and shorter lifespan in mice.

Barca-Mayo O, Boender AJ, Armirotti A, De Pietri Tonelli D

Astrocytes and Circadian Rhythms: An Emerging Astrocyte–Neuron Synergy in the Timekeeping System.

Olga Barca Mayo, Luca Berdondini, Davide De Pietri Tonelli

Astrocyte deletion of Bmal1 alters daily locomotor activity and cognitive functions via GABA signalling.

Olga Barca Mayo, Meritxell Pons, Philipp Follert, Andrea Armirotti, Luca Berdondini, Davide de Pietri Tonelli.

Convergent microRNA actions coordinate neocortical development

Olga Barca-Mayo, Davide De Pietri Tonelli.

Selected Results

Projects

National project(s)

Contribución de los astrocitos al sistema circadiano - Consolidación 2020 - Modalidade C - Proxectos de Excelencia
REF: ED431F 2020/09Duration: -
PI: Olga Barca Mayo
CONSELLERIA DE CULTURA, EDUCACION E UNIVERSIDADE